Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
biorxiv; 2024.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2024.03.06.583677

ABSTRACT

The hallmark of coronavirus infection lies in its ability to evade host immune defenses, a process intricately linked to the nuclear entry of transcription factors crucial for initiating the expression of antiviral genes. Central to this evasion strategy is the manipulation of the nucleocytoplasmic trafficking system, which serves as an effective target for the virus to modulate the expression of immune response-related genes. In this investigation, we discovered that infection with the infectious bronchitis virus (IBV) dynamically impedes the nuclear translocation of several transcription factors such as IRF3, STAT1, STAT2, NF-{kappa}B p65, and the p38 mitogen-activated protein kinase (MAPK), leading to compromised transcriptional induction of key antiviral genes such as IFN{beta}, IFITM3, and IL-8. Further examination revealed that during the infection process, components of the nuclear pore complex (NPC), particularly FG-Nups (such as NUP62, NUP153, NUP42, and TPR), undergo cytosolic dispersion from the nuclear envelope; NUP62 undergoes phosphorylation, and NUP42 exhibits a mobility shift in size. These observations suggest a disruption in nucleocytoplasmic trafficking. Screening efforts identified the IBV nucleocapsid protein (N) as the agent responsible for the cytoplasmic distribution of FG-Nups, subsequently hindering the nuclear entry of transcription factors and suppressing the expression of antiviral genes. Interactome analysis further revealed that the IBV N protein interacts with the scaffold protein RACK1, facilitating the recruitment of activated protein kinase C alpha (p-PKC) to RACK1 and relocating the RACK1-PKC complex to the cytoplasm. These observations are conserved across pan-coronaviruses N proteins. Concurrently, the presence of both RACK1 and PKC/{beta} proved essential for the phosphorylation and cytoplasmic dispersion of NUP62, the suppression of antiviral cytokine expression, and efficient virus replication. These findings unveil a novel, highly effective, and evolutionarily conserved mechanism.


Subject(s)
Coronavirus Infections , Bronchitis
2.
biorxiv; 2023.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2023.03.20.533404

ABSTRACT

The endoribonuclease (EndoU) nsp15 of coronaviruses plays an important role in evasion of host innate immune responses by reducing the abundance of viral double-stranded RNA, whereas less is known about potential host cellular targets of nsp15. In this study, we show that cellular protein synthesis is inhibited upon over-expression of nsp15 from four genera of coronaviruses and this is accompanied by nuclear retention of the poly(A) binding protein cytoplasmic 1 (PABPC1). We also show that the EndoU activity of nsp15 is indispensable for both, inhibition of protein synthesis and PABPC1 nuclear relocation. FISH analysis using oligo-dT probes, revealed an overlap between the localization of cellular mRNA and that of overexpressed nsp15 in some cells, suggesting that, when expressed alone, nsp15 may target host mRNA. When investigating the association of nsp15 on protein shut off in the context of a viral infection, we observed that the {gamma}-coronavirus infectious bronchitis virus (IBV), induced host translation shutoff in an p-eIF2-independent manner and mainly retained PABPC1 in the cytoplasm, whereas the nsp15 EndoU-deficient IBV accumulated viral dsRNA and caused p-PKR-p-eIF2-dependent host protein translation shutoff, accompanied with PABPC1 nuclear relocation or stress granule (SG) localization. This phenomenon suggests that during infection with wild type IBV, although the cellular translation is inhibited, initiation of viral mRNA translation leads to PABPC1 binding to viral mRNA, thereby preventing its nuclear entry; during infection with nsp15 EndoU-deficient IBV however, the eIF2-dependent host protein translation shutoff prevents both host and viral mRNA translation initiation, releasing PABPC1 from binding to cytosolic and viral mRNA, thereby relocating it to the nucleus or to SG. Altogether, this study reveals unique yet conserved mechanisms of host protein shutoff that add to our understanding of how coronaviruses regulate host protein expression through a mechanism that involves catalytically active nsp15 EndoU, and describes how nsp15 may target both, viral and host mRNA.


Subject(s)
Bronchitis
SELECTION OF CITATIONS
SEARCH DETAIL